Star Formation at the edges of HII regions

Jan Brand INAF – Istituto di Radioastronomia & Italian ALMA Regional Centre Bologna, Italy

> Fabrizio Massi – Arcetri, Florence, Italy Lise Deharveng, Annie Zavagno – LAM, Marseille, France Bertrand LeFloch – Obs. Grenoble, Grenoble, France

Blitzed65 – Berkeley, 29-30 October 2010

Massive stars $(M > 8 M_0)$:

-May disperse parental molecular cloud via ionization, winds, supernova explosions, thus preventing subsequent SF;

-May give rise to new generation of stars through:

★compression of pre-existing dense condensations by IF + shock front (RDI)

★accumulation and subsequent collapse of gas swept-up by expansion of HII region (collect & collapse)

Star formation in pre-existing clumps

Cep OB2

E2, E3, E5, E6: H α emission stars = Classical T Tauri stars 1 Myr 0.2 - 0.5 M_o

I1, IRAS 21388+5622: YSOs with near IR excess and bright mid-IR emission 110 $\rm L_{o}$ (late B)

IRAS 21388+5622 associated with H2 jets, HH588, and a CO outflow of 3 10⁵ yr I1 associated with an H2O maser Valdettaro et al., ApJ, 675, 1352

Duvert et al 1990, A&A, 233, 190

BRC37

Figure 3. An *HST* WFPC2 image of the G353.2+0.9 H II region in NGC 6357 (Healy et al. 2004). This figure illustrates the astrophysical context for the sequence of events described in 4.

Hester & Desch, 2005 ASP 341

NGC6357-complex:

G353.2+0.9

HST

NGC6357-complex:

G353.2+0.9

HST

ESO-NTT K-band detections

Giannetti, Brand, Massi 2010

RCW 79

Distance = 4.3 kpc Diameter = 15 pc

Exciting cluster: a dozen O stars 2.5 Myr (negligible stellar winds) Martins et al. 2010, A&A, 510, 32

Shell of collected material: > 3600 M

Methanol maser

Fig. 10. *J* (blue), *H* (green) and K_S (red) composite colour image of the cluster ionizing the compact H II region (NTT observations). The field size is 2'.66 × 3'.85. North is up, east is left.

RCW 120

4.5 μm 8.0 μm Hα

Zavagno et al. AA 472, 2007

RCW 120

4.5 μm 8.0 μm Hα

1.2 mm

Zavagno et al. AA 472, 2007

Deharveng et al. 2009 A&A 496

Star formation by collect and collapse

Sh2-217

Exciting star: O9.5 V(A_V= 2.1 mag.)

Diameter: 11 x 9 pc²

Distance: 4.2±0.3kpc

Image: $H\alpha + [SII]$ OHP, 120-cm

Brand et al. 2010

Image: $H\alpha + [SII]$ OHP, 120-cm Image: $H\alpha + H \& K$ OHP, 120-cm TNG, 3.6-m

CO(2-1) -23 to -15 km/s

Sh2-217

CO(2-1) 10 Kkm/s contour

Identifying features

EASTERN CLOUD

Optical HII region (DSS2) (black contours) $V(H\alpha) = -20.4$ km/s

CO(2-1): -22 to -21 km/s; (coloured contours)

 $M = 1.5 \times 10^3 M_{\odot}$ from ¹²CO(2-1)

> Eastern cloud probably foreground

∆ð (arcsec)

RING CLOUD

CO(2-1): -21 to -16 km/s

(coloured contours)

Optical HII region (black contours)

 $\begin{array}{l} M_{\text{ring}} = 5.8 \times 10^3 \ \text{M}_{\odot} \\ \text{from}^{12} \text{CO}(2\text{-}1) \end{array}$

"Ring" clumps Probably background

 $M_{clump} = 1.1 \times 10^3 M_{\odot}$ from ¹²CO(2-1), ¹³CO(1-0),

∆ð (arcsec)

JHK for 121 stars; 90% within r=1.1 pc. Star 49: B0V, $A_V = 19.1$ mag Age ≤ 1 Myr **Deharveng et al. 2003; Brand et al. 2010**

Sh2-217: Integrated residual ¹³CO(1-0) in cluster region

Application Whitworth et al. 1994 model on Sh2-217 Results

Dynamical age Sh2-217 (n_{init} =2000 cm⁻³): 4 Myrs Onset fragmentation: 0.9 – 1.2 Myrs ago (\approx age cluster) Mass of fragments: 600 – 1200 M_o Dynamical age UCHII: 0.3 – 0.5 Myrs (n_{init} =2000 - 5000 cm⁻³)

Hence: Age Sh2-217 \geq Age UCHII + age cluster Collect & collapse mechanism may be at work here

Sh2-219
$$d = 5.0 \pm 0.8 \text{ kpc}$$

Exciting star: 09.5 V

Image: $H\alpha + [SII]$

Image: $H\alpha + H\&K$

Deharveng et al. 2006

Sh2-219

Deharveng et al. 2006

Likely SF in pre-existing clump

Can massive stars form via triggering by HII regions? YES

Deharveng & Zavagno 2010, IAU270

□ The second-generation massive stars are less massive than the first-generation ones . Not predicted by the model of collect & collapse

□ No second -generation star more massive than O8V Lo

Look around larger bubbles?

All these objects need a distance...

Epilogue....how it began

1982

Leo & The Galactic Rotation Curve

Mike Fich, Tony Stark, Jan Wouterloot, Jan Brand

The velocity field of the outer Galaxy*

J. Brand^{1,2} and L. Blitz³

¹ Osservatorio Astrofisico di Arcetri, Florence, Italy

² Istituto di Radioastronomia, CNR Via Irnerio 46, I-40126 Bologna, Italy

³ Astronomy Department, University of Maryland College Park, MD 20742, USA

Received August 11, 1992; accepted February 11, 1993

Fig. 2b. As Fig. 2a, but a grid has been superimposed, in which for every 5° in longitude distances have been marked every kiloparsec. This allows easier determination of kinematic distances for various combinations of longitude and velocity

The velocity field of the outer Galaxy*

J. Brand^{1,2} and L. Blitz³

¹ Osservatorio Astrofisico di Arcetri, Florence, Italy

² Istituto di Radioastronomia, CNR Via Irnerio 46, I-40126 Bologna, Italy

³ Astronomy Department, University of Maryland College Park, MD 20742, USA

Received August 11, 1992; accepted February 11, 1993

Citations history for 1993A&A...275...67B from the ADS Databases

The Citation database in the ADS is **NOT** complete. Please keep this in mind when using the <u>ADS</u> <u>Citation lists</u>.

What would Leo do?

Then:

Do the exact opposite.....

Do likewise.....

Looking for Giant Molecular Clouds (GMCs) ?

Thank you, Leo!

Grazie 1003, Commendatore!