
Chapter 7
Neutron Stars

7.1 White dwarfs
We consider an old star, below the mass necessary for a supernova, that exhausts its fuel
and begins to cool and contract. At a sufficiently low temperature the electrons will fill the
lowest possible quantum levels. There are two spin states per level and 4πk2dk/(2πh̄)3 levels
per unit volume with momentum between k and k + dk. Thus the equation for the Fermi
momentum is

n =
8π

(2πh̄)3

∫ kf

0
k2dk =

k3
f

3π2h̄3

Now essentially all the mass of the star is in nucleons, so we can relate the electron number
density n to the mass density ρ by

ρ = nmNµ

where µ is the ratio of nucleons to electrons in the state and mN is the nucleon mass. Thus

kf = h̄(
3π2ρ

mNµ
)1/3.

All of this is valid for a cold gas, that is, one where the kinetic energy (e.g, Fermi energy) of
the electrons is much larger than kT

kT � [k2
f + m2

e]
1/2 −me

Now we can easily calculate the pressure of the gas. Consider a one dimensional box. The
pressure is the force per unit area on the walls, which we can evaluate from the transfered
momentum resulting from collisions of particles of momenta k on a surface area A over a
time dt

dk = (2k)× (nAvdt)× 1/2

where the first term is the momentum transfer on reflecting off a surface, nAvdt is the
number of particles that may hit the area A in time dt, and the 1/2 is needed because half
of the particles in that volume are going the wrong way to collide with the box wall. Thus
the 1D pressure is

p =
nk2

ε

where ε is the electron’s energy. Now in 3D k2 = k2
x + k2

y + k2
z , and repeating this calculation

one takes only the x projection of the momentum transfer and velocity. Thus

p =
nk2

3ε

So integrating over the Fermi sea yields

p =
8π

3(2πh̄)3

∫ kf

0

k2

(k2 + m2
e)

1/2
k2dk
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or equivalently,

p =
m4

e

3π2h̄3

∫ kf /me

0

u4du

(1 + u2)1/2

=
m4

e

24π2h̄3 [(2u3
0 − 3u0)(1 + u2

0)
1/2 + 3 sinh−1 u0]

where u0 = kf/me. If we substituted our expression for the Fermi momentum into u0 and
plug into the equation above, we would have the pressure as a function of density, the equa-
tion of state.

The point where kf = me (u0 = 1) defines a rough partition between nonrelativistic and
relativistic regimes. This corresponds to the critical mass density for the star

ρc =
mNµ

3π2
(
mec

2

h̄c
)3 = 0.97× 106µ g/cm3

where we inserted the needed factors of c.

Thus if ρ � ρc the electrons are nonrelativistic. We can integrate the expressions above in
the nonrelativistic limit (or carefully take the limit u0 → 0 of the expression above) to get

p =
8π

3(2πh̄)3

1

me

k5
f

5
=

h̄2

15π2me

(
3π2ρ

mNµ

)5/3

Note that the equation for the pressure is of the form

p = Kργ

where

K =
h̄2

15meπ2

(
3π2

mNµ

)5/3

and γ = 5/3

Any star where the equation of state has this form is called a polytrope. This particular
polytrope is a reasonably good approximation of a small mass (that is, nonrelativistic elec-
trons) white dwarf. It can be shown that the equations of stellar evolution can be integrated
semi-analytically for a polytrope, given a value for the star’s central density. Specifically,
these are the equations for hydrostatic equilibrium and for the star’s mass:

dp

dr
= −Gρ(r)M(r)

r2

dM(r)

dr
= 4πr2ρ(r)

where G is Newton’s constant. The procedure for solving these equations involves specifying
some central density ρ(r), or equivalently p(0) because we have a polytrope, and then inte-
grating these equations outward, to the point r = R where the pressure goes to zero. This
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defines the star’s radius. The result for γ =5/3 is

M =
2.72

µ2

(
ρ(0)

ρc

)1/2

M�

R = 2.0× 104 1

µ

(
ρ(0)

ρc

)−1/6

km

The details are given in Weinberg’s Gravitation and Cosmology.

Similarly, these integrations can be done in the ultrarelativistic limit where kf � me and
thus ρ� ρc. This yields

p =
8π

3(2πh̄)3

k4
f

4
=

h̄

12π2

(
3π2ρ

mNµ

)4/3

Thus this is a polytrope with

γ = 4/3 and K =
h̄

12π2

(
3π2

mNµ

)4/3

One remarkable result for the polytrope is that the resulting stellar mass is unique, indepen-
dent of ρ(0),

M = 5.87
1

µ2
M�

while the radius is

R = 5.3× 104 1

µ

(
ρc

ρ(0)

)1/3

km

This then gives the mass-radius relation for a large-mass white dwarf (ultrarelativistic elec-
tron gas).

What these results suggest is, as ρ(0) is increased in small mass white dwarfs, the mass
grows as ρ(0)1/2; but as the gas becomes relativistic, it runs up against an asymptote for the
maximum mass of 5.87µ−2M�. Consistent with this, as ρ(0) is further increased, the radius
decreases as ρ(0)−1/3. Thus in the relativistic regime, a higher ρ(0) just leads to a rescaling
of the overall density, as the mass M remains the same. Thus it appears that there is a
maximum mass for stable, cold white dwarfs

Chandresekhar mass : 5.87
1

µ2
M�

We have referred to this several times before in our discussion of the growing Fe core of
a supernova. We now sees if that core grows above this limiting value, there cannot be a
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hydrostatically stable solution for the core. Thus the core collapse we described.

And in actual calculations things are a bit more complicated. We expect initially µ ∼ 2, as
the matter initially should be made up of the α-like nuclear products of stellar burning. But
when kf becomes sufficiently high, ∼ 5me, electron capture on nuclei becomes favorable. If
the material becomes more neutron rich, µ increases, which then reduces the maximum mass
M . Thus our naive exercise of keeping µ fixed while producing successively more compact
white dwarfs by increasing ρ(0) is not correct. The naive maximum mass for a white dwarf
(µ ∼ 2) is 1.47 M�; if we use µ = 56/26 (appropriate for iron), the result is 1.27 M�. The
result of a detailed calculation that takes into account electron capture is 1.2 M�. The radius
of the star achieving this maximum is finite, about 4× 103 km.

One can calculate the gravitational potential for a large-mass (relativistic) white dwarf

GM

Rc2
= 0.293

1

µ

me

mN

(
ρ(0)

ρc

)1/3

More exactly, by plugging in the numerical values for the maximum mass and radius (from
a calculation that includes electron capture) one finds a value of 4.4 × 10−4. That is, the
gravitational potential energy of an electron at the surface of such a star would be less than
0.1% its rest mass energy. This tells us that general relativistic effects are not important to
white dwarf physics.

7.2 Neutron stars
The above discussion points out the the final state of a star that has exhausted its nuclear
fuel but lies above 1.2 M� is not a white dwarf: the electron gas cannot exert enough pressure
to support the star. Thus a more dramatic collapse must ensue in which higher densities
are achieved: much more gravitational work is done on the collapsing matter, heating it.
This energy powers the subsequent shock wave, neutrino emission, and mantle ejection of
a supernova, which we have already discussed. We will now suppose that the supernova
explosion results in the ejection of a sufficient fraction of the star’s mantle that the remain
dense core has a mass below the Chandrasekhar limit (to be defined for this case below).
This object, clearly denser than a white dwarf, forms the stable object known as a neutron
star.

The equations governing a neutron star are similar to those of the white dwarf, with the
role of electrons now played by neutrons and residual protons, though there are additional
terms describing special and general relativistic effects. The result is called the Tolman-
Oppenheimer-Volkov (TOV) equation

dp

dr
= −Gε(r)M(r)

r2

[
1 +

p(r)

ε(r)

] [
1 +

4πr3p(r)

M(r)

] [
1− 2GM(r)

r

]−1

Here ε is the energy density – not only the mass density but also the effects of interactions,
etc. The first two additional terms are special relativistic corrections: for example, the total

4



energy nonrelativistically is

8π

(2πh̄)3

∫ kf

0
mNk2dk =

8π

(2πh̄)3

mNk3
f

3

while we earlier showed in this limit

p→ 8π

(2πh̄)3

k5
f

15mN

Thus
p(r)

ε(r)
→

k2
f

5m2
N

which tends to zero as the system becomes completely nonrelativistic. The second term be-
haves similarly, while the third depends on the gravitational potential and is thus a general
relativistic effect. (Now the stellar radius of about 10 km is 1/400th that of the white dwarf
we previously discussed, so general relativity becomes much more important than in that
case.) Note that all three terms are greater than one, so that they effectively increase the
RHS relative to Newtonian gravity. We will ignore these terms below; henceforth we will
also denote the energy density by ρ(r).

The neutron star is very similar to the white dwarf except that the degeneracy pressure of
the nuclear matter, not the electron gas, supports the star. The total energy density is

ρ =
8π

(2πh̄)3

∫ kf

0
(k2 + m2

n)1/2k2dk = 3ρc

∫ kf /mN

0
(u2 + 1)1/2u2du

=
3ρc

8

 kf

mN

(
1 +

kf

mN

2
)1/2 (

1 + 2(
kf

mN

)2

)
− sin−1

(
kf

mN

)
where the critical density is defined as before

ρc =
8πm4

Nc3

3(2πh̄)3
= 6.11× 1015g/cm3

that is, we have substituted µ = 1 and me → mn. This has the limits

Nonrelativistic : ρ→ ρc

(
kf

mN

)3

Ultrarelativistic : ρ→ 3

4
ρc

(
kf

MN

)4

Likewise the pressure is

p =
8π

3(2πh̄)3

∫ kf

0

k2

(k2 + m2
n)1/2

k2dk = ρc

∫ kf /mn

0
(u2 + 1)−1/2u4du
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=
ρc

8

 kf

mN

(
1 +

kf

mN

2
)1/2 (

−3 + 2(
kf

mN

)2

)
+ 3 sin−1

(
kf

mN

) .

This has the limits

Nonrelativistic : p→ 1

5
ρc

(
kf

mN

)5

Ultrarelativistic : p→ 1

4
ρc

(
kf

mN

)4

In principle, the general equations for ρ and p can be combined to eliminate kf/mn and thus
to yield an equation of state of the form

p

ρc

= F (
ρ

ρc

)

though this is most simply accomplished in the two limits described above.

To get some analytic results, we proceed as in the white dwarf case, which means we neglect
the three correction terms in the TOV equation, and consider the nonrelativistic limit,
ρ(0)� ρc. The pressure is then given by

p =
1

5
ρc

(
ρ

ρc

)5/3

which we recognize as a polytrope of index 5/3, just as in the white dwarf case. Thus it
follows that

M ∼ 2.72M�(
ρ(0)

ρc

)1/2

R ∼ 10.9km

(
ρc

ρ(0)

)1/6

where these results can be extracted from the corresponding white dwarf ones with the sub-
stitutions µ→ 1 and me → mn.

The results above give in the ultrarelativistic limit ρ(0)� ρc (or kf � mn)

p =
ρ

3
.

That is, we have a polytrope of index 1, which we have not encountered before. One can
integrate the simplified TOV equation for a star that satisfies this equation of state in its
interior with the boundary condition ρ(0)→∞ to find

M∞ ∼ 0.34M� R∞ ∼ 3.2km
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This is an interesting result because our nonrelativistic result

M ∼ 2.72M�

(
ρ(0)

ρc

)1/2

yields the same mass for the choice ρ(0) ∼ 0.016ρc, which is clearly still nonrelativistic and
thus within the range of this equation’s validity. Clearly we could increase ρ(0) somewhat,
remaining in the nonrelativistic regime, and get greater masses. It follows that, for the ideal
gas, T=0 equations of state we are using, the maximum neutron star mass must be achieved
for some intermediate value of ρ(0). Numerical calculations yield

Mmax ∼ 0.7M� Rmax ∼ 9.6km

This mass is known as the Oppenheimer-Volkoff limit.

It follows that masses above this limit cannot be stable: they will collapse into a black hole.
One of the most interesting issues in the supernova game is to determine quantitatively this
mass cut, which determines the relative fractions of collapses producing a neutron star and
a black hole, respectively.

The above discussion is summarized in Figure 1, taken from Weinberg, showing the white
dwarf and neutron star mass trajectories for the ideal equations of state we considered, as
well as the results of better calculations that take into account the effects of µ, that is, the
fact that the equations of state are not those of pure iron or pure neutrons.

In addition to the simplification of the chemical composition, we have also neglected the ef-
fects of rotation and, most important, the effects of the strong interaction on the equation of
state. The latter is crucial in determining the true maximum neutron star mass. A number
of neutron star masses have been determined from observations, usually with substantial er-
ror bars. The minimum possible maximum mass, based on observation must be in the range
1.2-1.6 M�. This is derived by requiring that the observations not be in obvious conflict
with this upper bound. Calculations with detailed equations of state tend to give maximum
masses in the range ∼ 1.5−2.7M�, compatible with observation. Model independent bounds
on the maximum mass, which come from considerations like maintaining causal equations
of state, allow maximum masses up to ∼ 4M�.

We have barely touched the topic of neutron stars and the effects of the EOS here – though
we will hear a bit more about this topic in the talks some of the class will give. Figure 2
indicates some of this richness: the phases of nuclear matter that might exist in the 10km
that separates the neutron star surface from the inner core.
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Figure 1: From Weinberg: Configurations of stellar equilibrium. The solid curves on the
left and right represent the TOV solution for a pure neutron star and the Chandrasekhar
solution for a pure 56Fe white dwarf star, respectively. The dashed lines give the extrapolated
nonrelativistic solutions in these two cases. The dotted line represents the interpolating
solution of Harrison, Thorne, Wakano, and Wheeler, which takes into account the shift
in chemical composition from 56Fe to neutrons. Arrows indicate the direction of increasing
central density. The various transitions between stability and instability occur at the maxima
and minima of M, marked here with small circles.
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Figure 2: An illustration indicating the richness of the neutron star problem: the iron
and free-electron surface; neutron drip as the nuclei are pressed closer together; interesting
topological mixed phases that form as the matter makes the transition from nuclei to a
nucleon gas; the free neutron (with some protons and electrons) outer core from 1-2 times
nuclear density; a possible mixed phase (not shown) as the nucleon gas transitions to a more
exotic dense phase; and the very dense inner core where exotic states of nuclear matter –
pion or kaon condensates, free quarks or quark droplets, color-flavor-locked phases of nuclear
matter – might exist.

9


