Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary

Faraday Synthesis The synergy of aperture and rotation measure synthesis

M.R. Bell

with T. Enßlin - MPA

MKSP Workshop - Bologna - November 24, 2011

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	000000	
Outline				

2 Background

- Brief review of aperture synthesis
- Brief review of RM Synthesis

3 Faraday synthesis

- Proof of concept implementation
 - fsimager software and mock data
 - Test results

 Introduction
 Background
 Faraday synthesis
 Proof of concept implementation
 Summary

 •00000000
 Next generation radio astronomy
 Summary
 Summary
 Summary

・ロト ・ 日 ト ・ ヨ ト ・

• RM synthesis takes advantage of bandwidth, provides many benefits

イロト イポト イヨト イ

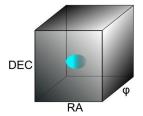
- RM synthesis takes advantage of bandwidth, provides many benefits
 - Increased sensitivity

イロト イポト イヨト イ

- RM synthesis takes advantage of bandwidth, provides many benefits
 - Increased sensitivity
 - More accurate measurement of Faraday depth

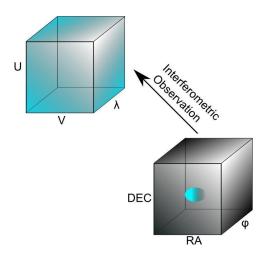
<**₽** > < **₽** >

- RM synthesis takes advantage of bandwidth, provides many benefits
 - Increased sensitivity
 - More accurate measurement of Faraday depth
 - Separate sources at different Faraday depths for independent study

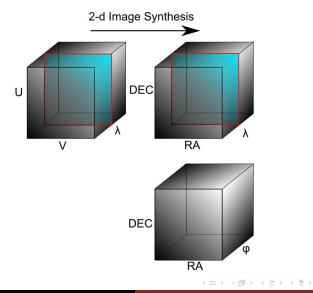

▲ □ ▶ ▲ □ ▶

- RM synthesis takes advantage of bandwidth, provides many benefits
 - Increased sensitivity
 - More accurate measurement of Faraday depth
 - Separate sources at different Faraday depths for independent study
 - Probe the mangetic fields between source and observer

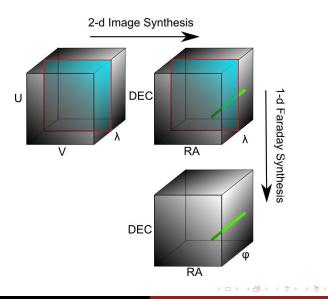
▲ 伊 ▶ → 三 ▶


Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
00000000	0000	00	000000	
Evolving	the techni	que		

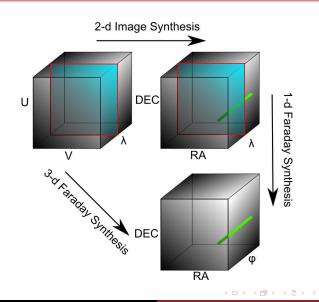
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶


 Introduction
 Background
 Faraday synthesis
 Proof of concept implementation
 Summary

 Evolving the technique
 Summary
 Summary
 Summary
 Summary
 Summary

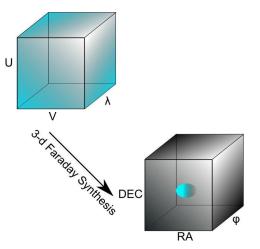

< □ > < □ > < □ > < □ > < □ > < □ >

 Introduction
 Background
 Faraday synthesis
 Proof of concept implementation
 Summary


 Evolving the technique
 Summary
 Summary
 Summary
 Summary

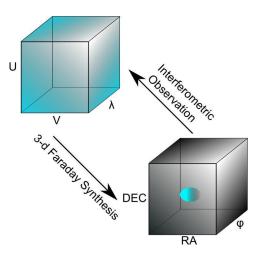
M.R. Bell Faraday Synthesis

 Introduction
 Background
 Faraday synthesis
 Proof of concept implementation
 Summary


 Evolving the technique
 Summary
 Summary
 Summary
 Summary
 Summary

M.R. Bell Faraday Synthesis

문 > 문


Introduction 0000000●0	Background 0000	Faraday synthesis 00	Proof of concept implementation	Summary
Evolving [·]	the technic	que		

・ロト ・四ト ・ヨト ・ヨト

 Introduction
 Background
 Faraday synthesis
 Proof of concept implementation
 Summary

 Evolving the technique
 Summary
 Summary
 Summary
 Summary
 Summary

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	●೦೦೦	00	000000	
Interfero	metry			

Van Cittert–Zernike theorem

$$V(u,v,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dl \, dm \, \mathscr{I}(l,m,v) e^{-2\pi i (ul+vm)} = \mathscr{F}_{2D}[\mathscr{I}]$$

・ロト ・日 ・ ・ ヨ ・ ・

문 > 문

Interferc	metrv			
Introduction 000000000	Background ●000	Faraday synthesis 00	Proof of concept implementation	Summary

Van Cittert-Zernike theorem

$$V(u,v,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dl \, dm \, \mathscr{I}(l,m,v) e^{-2\pi i (ul+vm)} = \mathscr{F}_{2D}[\mathscr{I}]$$

The sky is also attenuated by the antenna reception pattern
A(l,m,v)

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	●೦೦೦	00	000000	
Interfero	metry			

Van Cittert-Zernike theorem

$$V(u,v,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dl \, dm \, \mathscr{I}(l,m,v) e^{-2\pi i (ul+vm)} = \mathscr{F}_{2D} \left[\mathscr{I} \right]$$

- The sky is also attenuated by the antenna reception pattern
 A(l,m,v)
- The *uv*-plane is only partially sampled
 - S(u, v, v)

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	●೦೦೦	00	000000	
Interfero	metry			

Van Cittert-Zernike theorem

$$V(u,v,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dl \, dm \, \mathscr{I}(l,m,v) e^{-2\pi i (ul+vm)} = \mathscr{F}_{2D}[\mathscr{I}]$$

- The sky is also attenuated by the antenna reception pattern
 A(l,m,v)
- The *uv*-plane is only partially sampled
 - S(u,v,v)

$$\widehat{V}(u,v,v) = S\mathscr{F}_{2D}[A(l,m,v)\mathscr{I}(l,m,v)]$$

Imaging	the sky			
Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	○●○○	00	000000	

$$\begin{aligned} \mathscr{I}_D(l,m,v) &= \mathscr{F}_{2D}^{-1} \left[\widehat{V}(u,v,v) \right] \\ &= B(l,m,v) * [A(l,m,v) \mathscr{I}(l,m,v)] \end{aligned}$$

M.R. Bell Faraday Synthesis

▲□▶ ▲圖▶ ▲重▶ ▲重▶ 三重 - 釣�?

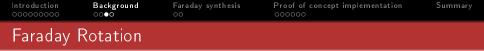
Introduction 000000000	Background 0●00	Faraday synthesis 00	Proof of concept implementation	Summary
Imaging	the sky			

$$\begin{aligned} \mathscr{I}_D(l,m,\mathbf{v}) &= \mathscr{F}_{2D}^{-1} \left[\widehat{V}(u,v,v) \right] \\ &= B(l,m,v) * [A(l,m,v) \mathscr{I}(l,m,v)] \end{aligned}$$

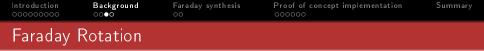
- Sky brightness convolved with $B = \mathscr{F}_{2D}^{-1}[S]$
- B is nasty, so deconvolution is required (e.g. CLEAN)

• The Faraday effect rotates a plane polarized wave according to

•
$$\chi = \chi_0 + \phi \lambda^2$$



イロト イポト イヨト イヨト


- The Faraday effect rotates a plane polarized wave according to
 - $\chi = \chi_0 + \phi \lambda^2$
- ϕ , Faraday depth
 - $\phi(z) \propto \int_0^z dz' n_e(z') B_z(z')$

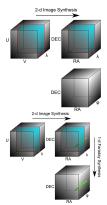
イロト イポト イヨト イヨト

- The Faraday effect rotates a plane polarized wave according to
 - $\chi = \chi_0 + \phi \lambda^2$
- φ, Faraday depth
 - $\phi(z) \propto \int_0^z dz' n_e(z') B_z(z')$
- $P(l,m,\lambda^2) = \int_{-\infty}^{\infty} d\phi F(l,m,\phi) e^{2i\phi\lambda^2} = \mathscr{F}_{1D}[F(l,m,\phi)]$

イロト イポト イヨト イヨト

- The Faraday effect rotates a plane polarized wave according to
 - $\chi = \chi_0 + \phi \lambda^2$
- ϕ , Faraday depth
 - $\phi(z) \propto \int_0^z dz' n_e(z') B_z(z')$

•
$$P(l,m,\lambda^2) = \int_{-\infty}^{\infty} d\phi F(l,m,\phi) e^{2i\phi\lambda^2} = \mathscr{F}_{1D}[F(l,m,\phi)]$$


see Brentjens & de Bruyn, 2005

$$F_D(l,m,\phi) = \mathscr{F}_{1D}^{-1} \left[S(l,m,\lambda^2) P(l,m,\lambda^2) \right]$$

= $F(l,m,\phi) * B(l,m,\phi)$

▲ 同 ▶ ▲ 国 ▶ ▲

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	○○○●	00	000000	
RM Synt	hesis			

- $\bullet~2D$ imaging of Stokes Q and U at each λ^2
 - 2D deconvolution with limited sensitivity !!
 - UV coverage varies with frequency !!
- Stack images, perform RM synthesis along each LOS
 - UV tapering and a uniform restoring beam used to make up for varying UV coverage
 - Deconvolve again (e.g. RMCLEAN *Heald* et al., 2009)

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	●○	000000	
Putting it	t all toget	her		

• Aperture synthesis, Stokes Q

•
$$\widehat{V}_Q = S\mathscr{F}_{2D}[AQ]$$

• RM synthesis

•
$$Q = \mathscr{F}_{1D}[F_Q]$$
, NOTE: $F_Q \in \mathbb{C}$

æ

・ 回 と く ヨ と く

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	●○	000000	
Putting it	: all toget	her		

• Aperture synthesis, Stokes Q

•
$$\widehat{V}_Q = S\mathscr{F}_{2D}[AQ]$$

• RM synthesis

•
$$Q = \mathscr{F}_{1D}[F_Q]$$
, NOTE: $F_Q \in \mathbb{C}$

$$\widehat{\mathcal{V}_Q} = S\mathscr{F}_{2D} [A\mathscr{F}_{1D}(F_Q)] = S\mathscr{F}_{3D} [a * F_Q]$$

э

・日・ ・ ヨ・ ・

Introduction	Background 0000	Faraday synthesis ●○	Proof of concept implementation	Summary
Putting it	: all toget	her		

• Aperture synthesis, Stokes Q

•
$$\widehat{V_Q} = S\mathscr{F}_{2D}[AQ]$$

• RM synthesis

•
$$Q = \mathscr{F}_{1D}[F_Q]$$
, NOTE: $F_Q \in \mathbb{C}$

$$\widehat{V_Q} = S\mathscr{F}_{2D}[A\mathscr{F}_{1D}(F_Q)]
= S\mathscr{F}_{3D}[a * F_Q]$$

• $A(l,m,\lambda^2) = \mathscr{F}_{1D}[a(l,m,\phi)]$

э

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	○●	000000	
3D Imag	ing			

$$(a * F_Q)_D = \mathscr{F}_{3D}^{-1} \left[\widehat{V_Q} \right]$$

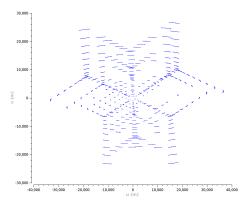
= $B * a * F_Q$

< 口 > < 部 > < 토 > < 토 > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - > </td

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	0●	000000	
3D Imag	ing			

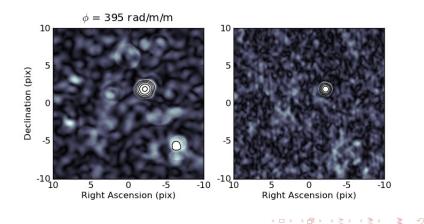
$$(a * F_Q)_D = \mathscr{F}_{3D}^{-1} \left[\widehat{V_Q} \right]$$

= $B * a * F_Q$


- The 3D dirty image is a convolution between
 - The Faraday spectrum, F
 - The 3D beam (PSF), B
 - The primary beam, transformed into Faraday space, i.e. $a(I, m, \phi)$

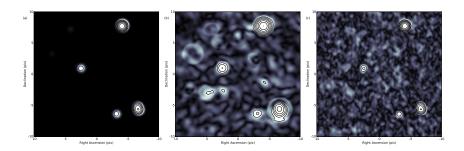
Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	●00000	
fsimage	er			

- fsimager Faraday synthesis imaging software
 - Written in Python, plus some Cython for speed
 - Gridding & imaging
 - Deconvolution via a 3D Clark CLEAN algorithm
- Only the basics for now...
 - No beam corrections, widefield imaging, etc.
 - Everything resides in memory, which severely limits the image size


Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	0●0000	
Mock ob	servations			

- 30 point sources
 - Random locations
 - Random fluxes (0.06 - 64 Jy)
- "Observed" with the VLA from 1-4 GHz (x64 channels)
- Added Gaussian white noise, $\sigma=$ 10 Jy

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	००●०००	
Results				

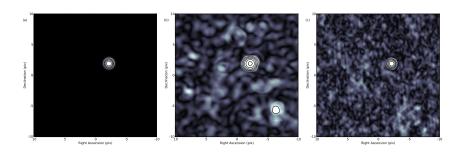

Side by side comparison

M.R. Bell Faraday Synthesis

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	०००●००	
Results				

$$\phi = 68 \text{ rad/m}^2$$

Model - 2+1D - fsimager


M.R. Bell Faraday Synthesis

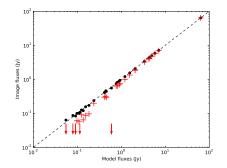
・ロト ・日下・ ・ 田下

э

Introduction 000000000	Background 0000	Faraday synthesis 00	Proof of concept implementation ○○○○●○	Summary
Results				

$$\phi = 395 \text{ rad/m}^2$$

Model - 2+1D - fsimager


M.R. Bell Faraday Synthesis

・ロト ・ 日 ト ・ ヨ ト ・

3 N 3

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	○○○○○●	
Results				

- Noise levels about the same $@\sim 5 mJy/Beam$
- Model sources at 10σ and higher
- Recall: 30 sources in the model
- fsimager:
 - 32 sources detected above 50 mJy/Beam
 - No sources missing
- 2+1D
 - 147 sources detected above 50 mJy/Beam
 - 5 real sources not detected

crosses = Aperture + RM synthesis

M.R. Bell Faraday Synthesis

Introduction	Background	Faraday synthesis	Proof of concept implementation	Summary
000000000	0000	00	000000	
Summary	/			

- Faraday synthesis improves on aperture + RM synthesis
 - Improveded fidelity
 - Higher resolution
 - Less computationally expensive (in principle)
- Provides a solid framework for building new image reconstruction algorithms
- A production implementations is needed!